Problem

Source: RMM Shortlist 2021 A4

Tags: analysis, RMM Shortlist, Sequences, Convergence, algebra



Let $f: \mathbb{R} \to \mathbb{R}$ be a non-decreasing function such that $f(y) - f(x) < y - x$ for all real numbers $x$ and $y > x$. The sequence $u_1,u_2,\ldots$ of real numbers is such that $u_{n+2} = f(u_{n+1}) - f(u_n)$ for all $n\geq 1$. Prove that for any $\varepsilon > 0$ there exists a positive integer $N$ such that $|u_n| < \varepsilon$ for all $n\geq N$.