Given triangle $ABC$. $D$ is a point on $BC$. $AC$ meets $(ABD)$ again at $E$,and $AB$ meets $(ACD)$ again at $F$. $M$ is the midpoint of $EF$. $BC$ meets $(DEF)$ again at $P$. Prove that $\angle BAP = \angle MAC$.
Source: IMOC 2023 G4
Tags: geometry
Given triangle $ABC$. $D$ is a point on $BC$. $AC$ meets $(ABD)$ again at $E$,and $AB$ meets $(ACD)$ again at $F$. $M$ is the midpoint of $EF$. $BC$ meets $(DEF)$ again at $P$. Prove that $\angle BAP = \angle MAC$.