Problem

Source: Own. Malaysian SST 2023 P2

Tags: geometry



Let $ABC$ be a triangle with orthocenter $H$. Let $\ell_b, \ell_c$ be the reflection of lines $AB$ and $AC$ about $AH$ respectively. Suppose $\ell_b$ intersect $CH$ at $P$, and $\ell_c$ intersect $BH$ at $Q$. Prove that $AH, PQ, BC$ are concurrent. Proposed by Ivan Chan Kai Chin