Problem

Source: MEMO 2023 I1

Tags: inequalities, MEMO2023



For each pair $(\alpha, \beta)$ of non-negative reals with $\alpha+\beta \geq 2$, determine all functions $f:\mathbb{R} \rightarrow \mathbb{R}$, such that $$f(x)f(y) \leq f(xy)+\alpha x+\beta y$$for all reals $x, y$.