Problem

Source: Chinese Girls Mathematical Olympiad 2023

Tags: combinatorics, geometry, combinatorical geometry



Let $P_i(x_i,y_i)\ (i=1,2,\cdots,2023)$ be $2023$ distinct points on a plane equipped with rectangular coordinate system. For $i\neq j$, define $d(P_i,P_j) = |x_i - x_j| + |y_i - y_j|$. Define $$\lambda = \frac{\max_{i\neq j}d(P_i,P_j)}{\min_{i\neq j}d(P_i,P_j)}$$. Prove that $\lambda \geq 44$ and provide an example in which the equality holds.