Problem

Source: Pan-American Girls’ Mathematical Olympiad 2023 P4

Tags: geometry



In an acute-angled triangle $ABC$, let $D$ be a point on the segment $BC$. Let $R$ and $S$ be the feet of the perpendiculars from $D$ to $AC$ and $AB$, respectively. The line $DR$ intersects the circumcircle of $BDS$ at $X$, with $X \neq D$. Similarly, the line $DS$ intersects the circumcircle of $CDR$ at $Y$, with $Y \neq D$. Prove that if $XY$ is parallel to $RS$, then $D$ is the midpoint of $BC$.