Problem

Source: Pan-American Girls’ Mathematical Olympiad 2023 P3

Tags: geometry, circumcircle, altitudes



Let $ABC$ an acute triangle and $D,E$ and $F$ be the feet of altitudes from $A,B$ and $C$, respectively. The line $EF$ and the circumcircle of $ABC$ intersect at $P$, such that $F$ it´s between $E$ and $P$. Lines $BP$ and $DF$ intersect at $Q$. Prove that if $ED=EP$, then $CQ$ and $DP$ are parallel.