Problem

Source: Cono Sur 2023 P6

Tags: algebra



Let $x_1, x_2, \ldots, x_n$ be positive reals; for any positive integer $k$, let $S_k=x_1^k+x_2^k+\ldots+x_n^k$. (a) Given that $S_1<S_2$, show that $S_1, S_2, S_3, \ldots$ is strictly increasing. (b) Prove that there exists a positive integer $n$ and positive reals $x_1, x_2, \ldots, x_n$, such that $S_1>S_2$ and $S_1, S_2, S_3, \ldots$ is not strictly decreasing.