Problem

Source: Cono Sur 2023 #3

Tags: geometry, geometric inequality, cono sur



In a half-plane, bounded by a line \(r\), equilateral triangles \(S_1, S_2, \ldots, S_n\) are placed, each with one side parallel to \(r\), and their opposite vertex is the point of the triangle farthest from \(r\). For each triangle \(S_i\), let \(T_i\) be its medial triangle. Let \(S\) be the region covered by triangles \(S_1, S_2, \ldots, S_n\), and let \(T\) be the region covered by triangles \(T_1, T_2, \ldots, T_n\). Prove that \[\text{area}(S) \leq 4 \cdot \text{area}(T).\]