Problem

Source: Cono Sur 2023 #1

Tags: inequalities, Sum of powers, cono sur



A list of \(n\) positive integers \(a_1, a_2,a_3,\ldots,a_n\) is said to be good if it checks simultaneously: \(\bullet a_1<a_2<a_3<\cdots<a_n,\) \(\bullet a_1+a_2^2+a_3^3+\cdots+a_n^n\le 2023.\) For each \(n\ge 1\), determine how many good lists of \(n\) numbers exist.