Let $a_1\geq a_2\geq \cdots \geq a_n >0 .$ Prove that$$ \left( \frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)^2\geq \sum_{k=1}^{n} \frac{k(2k-1)}{a^2_1+a^2_2+\cdots+a^2_k}$$
Source: Wenzhou
Tags: inequalities proposed, algebra, inequalities
Let $a_1\geq a_2\geq \cdots \geq a_n >0 .$ Prove that$$ \left( \frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)^2\geq \sum_{k=1}^{n} \frac{k(2k-1)}{a^2_1+a^2_2+\cdots+a^2_k}$$