Let $A = \frac{1 \cdot 3 \cdot 5\cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot (2n)}$ Prove that in the infinite sequence $A, 2A, 4A, 8A, ..., 2^k A, ….$ only integers will be observed, eventually.
Source: Azerbaijan NMO 2016. Senior P4
Tags: number theory, combinatorics
Let $A = \frac{1 \cdot 3 \cdot 5\cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot (2n)}$ Prove that in the infinite sequence $A, 2A, 4A, 8A, ..., 2^k A, ….$ only integers will be observed, eventually.