Problem

Source: Azerbaijan NMO 2016. Senior P5

Tags: function, algebra



Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation $$\sum_{i=1}^{2015} f(x_i + x_{i+1}) + f\left( \sum_{i=1}^{2016} x_i \right) \le \sum_{i=1}^{2016} f(2x_i)$$for all real numbers $x_1, x_2, ... , x_{2016}.$