A binoku is a $9 \times 9$ grid that is divided into nine $3 \times 3$ subgrids with the following properties: - each cell contains either a $0$ or a $1$, - each row contains at least one $0$ and at least one $1$, - each column contains at least one $0$ and at least one $1$, and - each of the nine subgrids contains at least one $0$ and at least one $1$. An incomplete binoku is obtained from a binoku by removing the numbers from some of the cells. What is the largest number of empty cells that an incomplete binoku can contain if it can be completed into a binoku in a unique way? Proposed by Stijn Cambie, South Korea