(a) Is it true that, for arbitrary integer $n{}$ greater than $1$ and distinct positive integers $i{}$ and $j$ not greater than $n{}$, the set of any $n{}$ consecutive integers contains distinct numbers $i^{'}$ and $j^{'}$ whose product $i^{'}j^{'}$ is divisible by the product $ij$? (b) Is it true that, for arbitrary integer $n{}$ greater than $2$ and distinct positive integers $i, j, k$ not greater than $n{}$, the set of any $n{}$ consecutive integers contains distinct numbers $i^{'},j^{'},k^{'}$ whose product $i^{'}j^{'}k^{'}$ is divisible by the product $ijk$?