On an infinite square grid, Gru and his $2022$ minions play a game, making moves in a cyclic order with Gru first. On any move, the current player selects $2$ adjacent cells of their choice, and paints their shared border. A border cannot be painted over more than once. Gru wins if after any move there is a $2 \times 1$ or $1 \times 2$ subgrid with its border (comprising of $6$ segments) completely colored, but the $1$ segment inside it uncolored. Can he guarantee a win? Evan Chang (oops)