Problem

Source: Revenge ELMO 2023/5

Tags: algebra, revenge elmo



Complex numbers $a,b,w,x,y,z,p$ satisfy \begin{align*} \frac{(x-w)\lvert a-w \rvert}{(a-w)\lvert x-w \rvert}&=\text{(cyclic variants)};\\ \frac{(z-w)\lvert b-w \rvert}{(b-w)\lvert z-w \rvert}&=\text{(cyclic variants)};\\ p &= \frac{\sum_{\text{cyc}} \frac w{\lvert p-w \rvert}}{\sum_{\text{cyc}}\frac1{\lvert p-w \rvert}}; \end{align*}where cyclic sums, equations, etc. are wrt $w,x,y,z$. Prove that there exists a real $k$ such that \[\sum_{\text{cyc}} \frac{(x-w)(a-w)}{\lvert x-w\rvert (p-w)} =k\sum_{\text{cyc}} \frac{(z-w)(b-w)}{\lvert z-w\rvert(p-w)}.\]Neal Yan