Problem

Source: Olimphíada 2021 - Problem 6

Tags: functional equation, functional equation in N, algebra



Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f : \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that, for all $m, n \in \mathbb{Z}_{>0 }$: $$f(mf(n)) + f(n) | mn + f(f(n)).$$