Problem

Source: Olimphíada 2023 - Problem 4/Level 3

Tags: floor function, prime numbers, Golden Ratio, residue, number theory



We say that a prime $p$ is $n$-$\textit{rephinado}$ if $n | p - 1$ and all $1, 2, \ldots , \lfloor \sqrt[\delta]{p}\rfloor$ are $n$-th residuals modulo $p$, where $\delta = \varphi+1$. Are there infinitely many $n$ for which there are infinitely many $n$-$\textit{rephinado}$ primes? Notes: $\varphi =\frac{1+\sqrt{5}}{2}$. We say that an integer $a$ is a $n$-th residue modulo $p$ if there is an integer $x$ such that $$x^n \equiv a \text{ (mod } p\text{)}.$$