Problem

Source: CAPS Match 2023 P5

Tags: geometry



Let $ABC$ be an acute-angled triangle with orthocenter $H$. Let $D$ be the foot of the altitude from $A$ to the line $BC$. Let $T$ be a point on the circle with diameter $AH$ such that this circle is internally tangent to the circumcircle of triangle $BDT$. Let $N$ be the midpoint of segment $AH$. Prove that $BT \perp CN$.