Problem

Source: CAPS Match 2023 P2

Tags: inequalities



Let $a_1, a_2, \ldots, a_n$ be reals such that for all $k=1,2, \ldots, n$, $na_k \geq a_1^2+a_2^2+ \ldots+a_k^2$. Prove that there exist at least $\frac{n} {10}$ indices $k$, such that $a_k \leq 1000$.