Problem

Source: JBMO Shortlist 2022

Tags: geometry, tangent, collinear, Junior, Balkan, shortlist



Let $ABC$ be a right triangle with hypotenuse $BC$. The tangent to the circumcircle of triangle $ABC$ at $A$ intersects the line $BC$ at $T$. The points $D$ and $E$ are chosen so that $AD = BD, AE = CE,$ and $\angle CBD = \angle BCE < 90^{\circ}$. Prove that $D, E,$ and $T$ are collinear. Proposed by Nikola Velov, Macedonia