Problem

Source: JBMO Shortlist 2022

Tags: geometry, Junior, Balkan, shortlist, concurrent



Given is an equilateral triangle $ABC$ and an arbitrary point, denoted by $E$, on the line segment $BC$. Let $l$ be the line through $A$ parallel to $BC$ and let $K$ be the point on $l$ such that $KE$ is perpendicular to $BC$. The circle with centre $K$ and radius $KE$ intersects the sides $AB$ and $AC$ at $M$ and $N$, respectively. The line perpendicular to $AB$ at $M$ intersects $l$ at $D$, and the line perpendicular to $AC$ at $N$ intersects $l$ at $F$. Show that the point of intersection of the angle bisectors of angles $MDA$ and $NFA$ belongs to the line $KE$.