Problem

Source: JBMO Shortlist 2022

Tags: combinatorics, Junior, Balkan, shortlist



There are $200$ boxes on the table. In the beginning, each of the boxes contains a positive integer (the integers are not necessarily distinct). Every minute, Alice makes one move. A move consists of the following. First, she picks a box $X$ which contains a number $c$ such that $c = a + b$ for some numbers $a$ and $b$ which are contained in some other boxes. Then she picks a positive integer $k > 1$. Finally, she removes $c$ from $X$ and replaces it with $kc$. If she cannot make any mobes, she stops. Prove that no matter how Alice makes her moves, she won't be able to make infinitely many moves.