Problem

Source: JBMO Shortlist 2022

Tags: Inequality, Junior, Balkan, shortlist, algebra



Let $a, b,$ and $c$ be positive real numbers such that $a + b + c = 1$. Prove the following inequality $$a \sqrt[3]{\frac{b}{a}} + b \sqrt[3]{\frac{c}{b}} + c \sqrt[3]{\frac{a}{c}} \le ab + bc + ca + \frac{2}{3}.$$ Proposed by Anastasija Trajanova, Macedonia