Problem

Source: JBMO 2023 Problem 4

Tags: geometry, circumcircle, Circumcenter



Let $ABC$ be an acute triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$ and let $M$ be the midpoint of $OD$. The points $O_b$ and $O_c$ are the circumcenters of triangles $AOC$ and $AOB$, respectively. If $AO=AD$, prove that points $A$, $O_b$, $M$ and $O_c$ are concyclic. Marin Hristov and Bozhidar Dimitrov, Bulgaria