Problem

Source: Austria MO Final round 2023 P1

Tags: algebra



Given is a nonzero real number $\alpha$. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$f(f(x+y))=f(x+y)+f(x)f(y)+\alpha xy$$for all $x, y \in \mathbb{R}$.