Given is a nonzero real number $\alpha$. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$f(f(x+y))=f(x+y)+f(x)f(y)+\alpha xy$$for all $x, y \in \mathbb{R}$.
Problem
Source: Austria MO Final round 2023 P1
Tags: algebra
a22886
27.05.2023 13:26
The condition implies directly that $$\text{if }x_1+y_1=x_2+y_2\text{, then }f(x_1)f(y_1)+\alpha x_1y_1=f(x_2)f(y_2)+\alpha x_2y_2~~(\star)$$we get $$\begin{cases}
f(t)f(-t)-\alpha t^2=f(0)^2&(1)\\
f(2t)f(-t)-2\alpha t^2=f(t)f(0)&(2)\\
f(-2t)f(t)-2\alpha t^2=f(-t)f(0)&(3)\\
f(2t)f(-2t)-4\alpha t^2=f(0)^2&(4)
\end{cases}$$solve $f(2t),f(-2t)$ from $(2),(3)$, plug in $(4)$ while noticing $(1)$, we have $$2\alpha t^2f(0)(2f(0)-f(t)-f(-t))=0.~~~~~(*)$$So two cases:
Case 1: $f(0)\neq 0$:
So $f(t)+f(-t)=2f(0)$ holds for arbitrary $t\in\mathbb{R}$. Plug in $(1)$ again we have $$f(t)=f(0)\pm t\sqrt{-\alpha}$$implicitly $\alpha<0$.
If we have $f(x)=f(0)+x\sqrt{-\alpha}$ and $f(y)=f(0)-y\sqrt{-\alpha}$, directly $f(-x)=f(0)-x\sqrt{-\alpha}$ and $f(-y)=f(0)+y\sqrt{-\alpha}$, consider$$2f(0)^2=f(0)f(x+y)+f(0)f(-x-y)=f(x)f(y)+\alpha xy+f(-x)f(-y)+\alpha xy=2f(0)^2+4\alpha xy$$So $xy=0$. But notice $f(0)=f(0)+0\times\sqrt{-\alpha}=f(0)-0\times\sqrt{-\alpha}$, so the sign can be chosen to be the same for all $x\in\mathbb{R}$, i.e. $$f(x)=f(0)\pm x\sqrt{-\alpha},~\forall x\in\mathbb{R}.$$Plug in the original equation we get $\alpha=-4,f(0)=2$.
Case 2: $f(0)=0$:
By $(\star)$ we have $$f(x)f(y)+\alpha xy=f(x+y)f(0)+\alpha(x+y)\times0=0,~~\forall x,y\in\mathbb{R}$$which is enough to give $$f(x)=x\sqrt{\alpha},~\forall x\in\mathbb{R}.$$implicitly $\alpha>0$. This function does not satisfy the original condition.
To sum up, $$f(x)=2\pm 2x~(\alpha=-4).$$
RagvaloD
27.05.2023 15:58
$y=0: f(f(x))=f(x)+f(x)f(0)$ So we can rewrite equation as $$ f(x+y)f(0)=f(x)f(y)+\alpha xy$$$y=1:f(x+1)f(0)=f(x)f(1)+\alpha x$ $f(x+2)f(0)=f(x)f(2)+2\alpha x$ and $f(x+2)f(0)=f(x+1)f(1)+ \alpha x$ so $ f(x)f(2)+\alpha = f(x+1)f(1)$ $f(x+1)f(1)f(0)=f(x)f(2)f(0)+\alpha f(0)=f(x)f(1)^2+\alpha f(1) x$ and so $f(x)=ax+b$ for some $a,b$ $f(x+y)f(0)=f(x)f(y)+\alpha xy \to (a(x+y)+b)b= (ax+b)(ay+b)+\alpha xy \to \alpha=-a^2, a \neq 0$ $f(f(x))=f(x)+f(x)f(0) \to a^2x+ab+b=ax+b+abx+b^2 \to b^2=ab, a^2=a+ab \to (a,b)=(1,0)$ And so $f(x)=x$ for $\alpha = -1$ and there are not solutions for $\alpha \neq -1$