Problem

Source: 2023 Macedonian Team Selection Test P5

Tags: algebra, polynomial, abstract algebra



Let $Q(x) = a_{2023}x^{2023}+a_{2022}x^{2022}+\dots+a_{1}x+a_{0} \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. For an odd prime number $p$ we define the polynomial $Q_{p}(x) = a_{2023}^{p-2}x^{2023}+a_{2022}^{p-2}x^{2022}+\dots+a_{1}^{p-2}x+a_{0}^{p-2}.$ Assume that there exist infinitely primes $p$ such that $$\frac{Q_{p}(x)-Q(x)}{p}$$is an integer for all $x \in \mathbb{Z}$. Determine the largest possible value of $Q(2023)$ over all such polynomials $Q$. Proposed by Nikola Velov