Problem

Source: 2023 Macedonian Team Selection Test P2

Tags: geometric inequality, inequalities, geometry, geometric transformation, reflection



Let $ABC$ be an acute triangle such that $AB<AC$ and $AB<BC$. Let $P$ be a point on the segment $BC$ such that $\angle APB = \angle BAC$. The tangent to the circumcircle of triangle $ABC$ at $A$ meets the circumcircle of triangle $APB$ at $Q \neq A$. Let $Q'$ be the reflection of $Q$ with respect to the midpoint of $AB$. The line $PQ$ meets the segment $AQ'$ at $S$. Prove that $$\frac{1}{AB}+\frac{1}{AC} > \frac{1}{CS}.$$ Proposed by Nikola Velov