Problem

Source: 2023 Macedonian Team Selection Test P1

Tags: number theory



Let $s(n)$ denote the smallest prime divisor and $d(n)$ denote the number of positive divisors of a positive integer $n>1$. Is it possible to choose $2023$ positive integers $a_{1},a_{2},...,a_{2023}$ with $a_{1}<a_{2}-1<...<a_{2023}-2022$ such that for all $k=1,...,2022$ we have $d(a_{k+1}-a_{k}-1)>2023^{k}$ and $s(a_{k+1}-a_{k}) > 2023^{k}$? Proposed by Nikola Velov