Problem

Source: Problem 1 oliforum contest 2009, second round

Tags: function, algebra proposed, algebra



Find all non empty subset $ S$ of $ \mathbb{N}: = \{0,1,2,\ldots\}$ such that $ 0 \in S$ and exist two function $ h(\cdot): S \times S \to S$ and $ k(\cdot): S \to S$ which respect the following rules: i) $ k(x) = h(0,x)$ for all $ x \in S$ ii) $ k(0) = 0$ iii) $ h(k(x_1),x_2) = x_1$ for all $ x_1,x_2 \in S$. (Pierfrancesco Carlucci)