An acute triangle $ABC$ has $AB$ as one of its longest sides. The incircle of $ABC$ has center $I$ and radius $r$. Line $CI$ meets the circumcircle of $ABC$ at $D$. Let $E$ be a point on the minor arc $BC$ of the circumcircle of $ABC$ with $\angle ABE > \angle BAD$ and $E\notin \{B,C\}$. Line $AB$ meets $DE$ at $F$ and line $AD$ meets $BE$ at $G$. Let $P$ be a point inside triangle $AGE$ with $\angle APE=\angle AFE$ and $P\neq F$. Let $X$ be a point on side $AE$ with $XP\parallel EG$ and let $S$ be a point on side $EG$ with $PS\parallel AE$. Suppose $XS$ and $GP$ meet on the circumcircle of $AGE$. Determine the possible positions of $E$ as well as the minimum value of $\frac{BE}{r}$.