Problem

Source: P4 Francophone Math Olympiad Senior 2023

Tags: number theory, divides, consecutive, Product



Do there exist integers $a$ and $b$ such that none of the numbers $a,a+1,\ldots,a+2023,b,b+1,\ldots,b+2023$ divides any of the $4047$ other numbers, but $a(a+1)(a+2)\cdots(a+2023)$ divides $b(b+1)\cdots(b+2023)$?