Problem

Source: P1 Francophone Math Olympiad Senior 2023

Tags: polynomial, algebra, inequalities



Let $P(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ be a polynomial with real coefficients such that $0 \leqslant a_i \leqslant a_0$ for $i = 1, 2, \ldots, n$. Prove that, if $P(X)^2 = b_{2n} X^{2n} + b_{2n-1} X^{2n-1} + \cdots + b_{n+1} X^{n+1} + \cdots + b_1 X + b_0$, then $4 b_{n+1} \leqslant P(1)^2$.