Problem

Source: Malaysian IMO TST 2023 P6

Tags: combinatorics



Suppose there are $n$ points on the plane, no three of which are collinear. Draw $n-1$ non-intersecting segments (except possibly at endpoints) between pairs of points, such that it is possible to travel between any two points by travelling along the segments. Such a configuration of points and segments is called a network. Given a network, we may assign labels from $1$ to $n-1$ to each segment such that each segment gets a different label. Define a spin as the following operation: $\bullet$ Choose a point $v$ and rotate the labels of its adjacent segments clockwise. Formally, let $e_1,e_2,\cdots,e_k$ be the segments which contain $v$ as an endpoint, sorted in clockwise order (it does not matter which segment we choose as $e_1$). Then, the label of $e_{i+1}$ is replaced with the label of $e_{i}$ simultaneously for all $1 \le i \le k$. (where $e_{k+1}=e_{1}$) A network is nontrivial if there exists at least $2$ points with at least $2$ adjacent segments each. A network is versatile if any labeling of its segments can be obtained from any initial labeling using a finite amount of spins. Find all integers $n \ge 5$ such that any nontrivial network with $n$ points is versatile. Proposed by Yeoh Zi Song