Problem

Source: Malaysian IMO TST 2023 P5

Tags: geometry



Let $ABCD$ be a cyclic quadrilateral, with circumcircle $\omega$ and circumcenter $O$. Let $AB$ intersect $CD$ at $E$, $AD$ intersect $BC$ at $F$, and $AC$ intersect $BD$ at $G$. The points $A_1, B_1, C_1, D_1$ are chosen on rays $GA$, $GB$, $GC$, $GD$ such that: $\bullet$ $\displaystyle \frac{GA_1}{GA} = \frac{GB_1}{GB} = \frac{GC_1}{GC} = \frac{GD_1}{GD}$ $\bullet$ The points $A_1, B_1, C_1, D_1, O$ lie on a circle. Let $A_1B_1$ intersect $C_1D_1$ at $K$, and $A_1D_1$ intersect $B_1C_1$ at $L$. Prove that the image of the circle $(A_1B_1C_1D_1)$ under inversion about $\omega$ is a line passing through the midpoints of $KE$ and $LF$. Proposed by Anzo Teh Zhao Yang & Ivan Chan Kai Chin