Problem

Source: Malaysian IMO TST 2023 P2

Tags: algebra



Let $a_1, a_2, \cdots, a_n$ be a sequence of real numbers with $a_1+a_2+\cdots+a_n=0$. Define the score $S(\sigma)$ of a permutation $\sigma=(b_1, \cdots b_n)$ of $(a_1, \cdots a_n)$ to be the minima of the sum $$(x_1-b_1)^2+\cdots+(x_n-b_n)^2$$over all real numbers $x_1\le \cdots \le x_n$. Prove that $S(\sigma)$ attains the maxima over all permutations $\sigma$, if and only if for all $1\le k\le n$, $$b_1+b_2+\cdots+b_k\ge 0.$$ Proposed by Anzo Teh Zhao Yang