Problem

Source: Malaysian IMO TST 2023 P1

Tags: combinatorics



Let $P$ be a cyclic polygon with circumcenter $O$ that does not lie on any diagonal, and let $S$ be the set of points on 2D plane containing $P$ and $O$. The $\textit{Matcha Sweep Game}$ is a game between two players $A$ and $B$, with $A$ going first, such that each choosing a nonempty subset $T$ of points in $S$ that has not been previously chosen, and such that if $T$ has at least $3$ vertices then $T$ forms a convex polygon. The game ends with all points have been chosen, with the player picking the last point wins. For which polygons $P$ can $A$ guarantee a win? Proposed by Anzo Teh Zhao Yang