Problem

Source: All-Russian MO 2023 Final stage 9.7/10.7

Tags: geometry, trapezoid



Given a trapezoid $ABCD$, in which $AD \parallel BC$, and rays $AB$ and $DC$ intersect at point $G$. The common external tangents to the circles $(ABC), (ACD)$ intersect at point $E$. The common external tangents to circles $(ABD), (CBD)$ meet at $F$. Prove that the points $E, F$ and $G$ are collinear.