Given is a triangle $ABC$ and a point $X$ inside its circumcircle. If $I_B, I_C$ denote the $B, C$ excenters, then prove that $XB \cdot XC <XI_B \cdot XI_C$.
Problem
Source: All-Russian MO Final stage 2023 9.4
Tags: geometry
24.04.2023 08:35
Bump this
24.04.2023 14:02
It’s easy to bash. Let $(ABC)$ be the unit circle and write $a=u^2,b=v^2,c=w^2$ Then the excenters are just the reflection of $I$ around the midpoints of the arcs. And of course $|x|<1$
25.04.2023 00:28
27.10.2023 10:37
Let $W$ be the midpoint of the arc $BAC$. Note that $BCI_BI_C$ is inscribed in circle $\Omega$ with the center $W$. If $X$ lies "under" $BC$ (such that segments $AX,BC$ intersect) then $\angle I_CBX, \angle I_BCX$ both obtuse, and the statement is obvious. Otherwise, let $F$ be the second intersection of $\Omega$ and $CX$. Then $2 \cdot \angle BFX = \angle BWC < \angle BXC = \angle BFX + \angle FBX \implies \angle BFX < \angle FBX \implies BX < FX$, so $XB \cdot XC < XF \cdot XC = |pow(X,\Omega)|$. Now, let $G$ be the second intersection of $I_CX$ and $\Omega$. Then $|pow(X,\Omega)|=I_CX \cdot XG < I_CX \cdot XI_B$ (because $\angle I_BGX = \frac{\pi}{2}$) hence $XB \cdot XC < |pow(X,\Omega)| < I_CX \cdot XI_B$ as desired.