Problem

Source: Russian TST 2016, Day 12 P2

Tags: algebra, functional equation



Prove that a function $f:\mathbb{R}_+\to\mathbb{R}$ satisfies \[f(x+y)-f(x)-f(y)=f\left(\frac{1}{x}+\frac{1}{y}\right)\]if and only if it satisfies $f(xy)=f(x)+f(y)$.