Let $R = AC \cap BD$
$\textbf{Claim 1)}$ $PX, AC, QY$ are concurrent.
$\textbf{Proof 1)}$
Let $S = AC \cap PX, S' = AC \cap QY$
$\frac{AS}{SC}=\frac{PA}{PC}=\frac{\sin \angle PCA}{\sin \angle PAC} = \frac{\sin \angle ACQ}{\sin \angle CAQ}=\frac{AQ}{QC}=\frac{AS'}{S'C}$, so $S = S'$.
$\textbf{Claim 2)}$ $\angle PSQ = 90$
$\textbf{Proof 2)}$ Simple angle chasing
$\textbf{Claim 3)}$ $PQ \parallel BC$
$\textbf{Proof 3)}$
Let $X, Y$ be the midpoint of $PQ, AC$ respectively.
Newton-Gauss Theorem in $PBDQ$ gives $X, Y, R$ are collinear. Therefore $X$ lies on $AC$, and $PQ \parallel BC$.
$\textbf{Claim 4)}$ $\angle PXR = 90$
$\textbf{Proof 4)}$ well known
By $\textbf{Claim 2}$ and $\textbf{Claim 4}$, we get $XRSY$ is rectangle.
Construct a rectangle $BUDV$ such that $BU \parallel PX$ and $DU \parallel QY$.
Since $PQ \parallel BD$, then $U, V$ lies on $AC$.
Therefore, triangle $XSY$ and $BTD$ are homothetic, so $XY \parallel BD$.