Problem

Source: Russian TST 2016, Day 10 P3 (Group A), P4 (Group B)

Tags: algebra, inequalities



Let $a,b,c$ be positive real numbers such that $a^2+b^2+c^2\geqslant 3$. Prove that \[\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\geqslant\frac{3}{2}.\]