Problem

Source: Romania National Olympiad 2023

Tags: fractional part, algebra, Inequality



For natural number $n$ we define \[ a_n = \{ \sqrt{n} \} - \{ \sqrt{n + 1} \} + \{ \sqrt{n + 2} \} - \{ \sqrt{n + 3} \}. \] a) Show that $a_1 > 0,2$. b) Show that $a_n < 0$ for infinity many values of $n$ and $a_n > 0$ for infinity values of natural numbers of $n$ as well. ( We denote by $\{ x \} $ the fractional part of $x.$)