For natural number $n$ we define \[ a_n = \{ \sqrt{n} \} - \{ \sqrt{n + 1} \} + \{ \sqrt{n + 2} \} - \{ \sqrt{n + 3} \}. \] a) Show that $a_1 > 0,2$. b) Show that $a_n < 0$ for infinity many values of $n$ and $a_n > 0$ for infinity values of natural numbers of $n$ as well. ( We denote by $\{ x \} $ the fractional part of $x.$)
Problem
Source: Romania National Olympiad 2023
Tags: fractional part, algebra, Inequality
23.06.2023 06:32
(1)$a_1=\{\sqrt 3\}-\{\sqrt 2\}=\sqrt 3-\sqrt 2$,notice that $\frac 1{a_1}=\sqrt 2+\sqrt 3<5$,$\therefore a_1>0.2$. (2)if $n=k^2-3(k\in \mathbb{N},k\ge 3)$,then $\{\sqrt {n+3}\}=0$,thus $a_n=\{\sqrt n\}+\sqrt {n+2}-\sqrt {n+1}>0$,s so $a_n>0$ for infinity many values of $n$; if $n=k^2(k\in \mathbb{N},k\ge 3)$,then $\{\sqrt n\}=0$,so $a_n=-\{\sqrt {n+1}\}+\{\sqrt {n+2}\}-\{\sqrt {n+3}\}<0$. so $a_n<0$ for infinity many values of $n$.
23.06.2023 07:48
a) is trivial if you put $1$ into $n$ b) For every square number $p$ $$a_p=-\{\sqrt{p+1}\}+\{\sqrt{p+2}\}-\{\sqrt{p+3}\}$$Because, $\{\sqrt{p+2}\}-\{\sqrt{p+3}\}$ is a negative number, for all square number $p$ $a_n$ is negative. Also, for all $a, b (a>b)$, $$\sqrt{a}-\sqrt{a-1}>\sqrt{b}-\sqrt{b-1}$$so if $n=x^2-3$ this works.
01.07.2023 20:32