Problem

Source: 239 Open MO, 2018, Junior League, Problem 6

Tags: number theory, inequalities



Petya wrote down 100 positive integers $n, n+1, \ldots, n+99$, and Vasya wrote down 99 positive integers $m, m-1, \ldots, m-98$. It turned out that for each of Petya's numbers, there is a number from Vasya that divides it. Prove that $m>n^3/10, 000, 000$. Proposed by Ilya Bogdanov