Given a prime number $p$. A positive integer $x$ is divided by $p$ with a remainder, and the number $p^2$ is divided by $x$ with a remainder. The remainders turned out to be equal. Find them Proposed by Sergey Berlov
Source: 239 Open MO, 2012, Junior League, Problem 1
Tags: number theory
Given a prime number $p$. A positive integer $x$ is divided by $p$ with a remainder, and the number $p^2$ is divided by $x$ with a remainder. The remainders turned out to be equal. Find them Proposed by Sergey Berlov