Let $r\geqslant 0$ be a real number and define $f(x)=1/(1+x^2)^r$. Prove that \[|f^{(k)}(x)|\leqslant\frac{2r\cdot(2r+1)\cdots(2r+k-1)}{(1+x^2)^{r+k/2}},\]for every natural number $k{}$. Here, $f^{(k)}(x)$ denotes the $k^{\text{th}}$ derivative of $f$.
Problem
Source: 239 School Open MO, 2023, Senior league, Problem 8
Tags: inequalities, derivative, algebra