Problem

Source: Russian TST 2018, Day 8 P4 (Groups A & B)

Tags: algebra, inequalities



Let $a_1,\ldots,a_{n+1}$ be positive real numbers satisfying $1/(a_1+1)+\cdots+1/(a_{n+1}+1)=n$. Prove that \[\sum_{i=1}^{n+1}\prod_{j\neq i}\sqrt[n]{a_j}\leqslant\frac{n+1}{n}.\]