Problem

Source: Russian TST 2020, Day 6 P2

Tags: number theory, inequalities, greatest common divisor



Given a natural number $n{}$ find the smallest $\lambda$ such that\[\gcd(x(x + 1)\cdots(x + n - 1), y(y + 1)\cdots(y + n - 1)) \leqslant (x-y)^\lambda,\]for any positive integers $y{}$ and $x \geqslant y + n$.