Problem

Source: Russian TST 2021, Day 8 P2

Tags: number theory, lattice points



The natural numbers $t{}$ and $q{}$ are given. For an integer $s{}$, we denote by $f(s)$ the number of lattice points lying in the triangle with vertices $(0;-t/q), (0; t/q)$ and $(t; ts/q)$. Suppose that $q{}$ divides $rs-1{}$. Prove that $f(r) = f(s)$.